Industry, Agency, and University Partnerships

Ahmet Aydilek, Charles W. Schwartz, and Dimitrios Goulias

University of Maryland

Marshall Klinefelter

Maryland Asphalt Association

MAA—SHA 55th Annual Paving Conference
March 1, 2017
Structural Design of Porous Asphalt Pavements

Partners: University of Maryland, National Asphalt Paving Association

High voids, large thickness of stone base:
Effect(s) on structural capacity?

- Infiltration rate: 0.1 to 10 in/hr
- Drain Time: 12 to 72 hr
- Thickness: 4 to 8 in
- Thickness: 12 to 36 in

High voids, high saturation levels in subgrade:
Reduced bearing capacity?
Challenges: Empirical AASHTO 93 Design

Defining traffic loads

Selecting structural layer coefficient (a_1)

Estimating structural contribution:
- Selecting structural layer coefficient (a_2)
- Determining ‘effective thickness’
- Selecting drainage coefficient (m_2)

Estimating appropriate resilient modulus
Modified Structural Section

6” Asphalt Surface
(a = 0.40)

Semi-Infinite “Subgrade”

Similar to
Stone Recharge Bed
(M_R = 20,000 psi)
(a = 0.10)

Total SN = 2.40

W_{18} = 2.3 MESAL

6” Asphalt Surface
(a = 0.40)

Choker Course

Stone Recharge Bed

Total Base: 36”
(a = 0.10)

Geotextile Separator

Uncompacted Subgrade
(M_R = 4000 psi)

Total SN = 6.00

W_{18} = 41.5 MESAL

6” Asphalt Surface
(a = 0.40)

Choker Course

Stone Recharge Bed

Total Structural Base: 17”
(a = 0.10)

‘Excess’ Base: 19”
(hydrologic only)

Geotextile Separator

Uncompacted Subgrade
(M_R = 4000 psi)

May be combined into “effective” subgrade M_R

for W_{18} = 2.3 MESAL
(over 4000 psi)

Total SN = 4.10
Recommendations

<table>
<thead>
<tr>
<th>Layer</th>
<th>Recommended Property Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous asphalt</td>
<td>$a_1 = 0.40$</td>
<td></td>
</tr>
<tr>
<td>ATPB</td>
<td>$a_2 = 0.30 - 0.33$</td>
<td></td>
</tr>
<tr>
<td>Uncompacted subgrade</td>
<td></td>
<td>Compaction and high moisture content. Incorporate excess stone base thickness into effective subgrade modulus. Use geosynthetic separator layer between subgrade and coarse stone base.</td>
</tr>
</tbody>
</table>

End Result: Broader implementation of porous asphalt pavements!
H/WMA Level 1 Properties for MEPDG

Partners: University of Maryland, MD State Highway Administration

Benefit: More effective use of W/HMA mixtures in pavement structural design in Maryland!
Foamed Asphalt Stabilized Base

Partners:
- University of Maryland
- MD State Highway Administration
- P. Flanigan & Sons, Inc.
- Global Resource Recyclers, Inc.
Benefits:

- More rational and effective use of foamed asphalt stabilized base materials in Maryland
- Utilization of excess RAP and RC stockpiles
- More sustainable pavement solutions
CIR/CCPR/FDR Level 1 Properties for MEPDG

Partners: University of Maryland, Virginia Transportation Research Council (VDOT), Wirtgen America, Colas Solutions, NCHRP

Benefits:
- More effective and widespread use of asphalt stabilized cold recycled mixtures in pavement structural design
- Complements H/WMA structural wearing course
Infrared Asphalt Repair

Partners: University of Maryland (CEE Dept, MIPS Program); Pavement Corporation
Project Results:

• Improvements to patching process (e.g., heating process, rejuvenator application)
• Documentation of patch material quality (density, indirect tensile strength)
• Development of QA procedures
• Draft specification

Currently working with MD SHA to add to state specs.

Benefits:

• Improvement/confirmation of infrared asphalt repair as a superior all-weather maintenance strategy
• Economic development through increased revenues and numbers of employees
UMD Infrastructure Lab Renovation

Existing Dedicated Teaching Lab Space
Project Motivation: Program Needs

- Laboratory experiences are a critical part of a civil and environmental engineering curricula
- 100% of UMD CEE juniors (120+ students/year) take ENCE 300 Fundamentals of Engineering Materials
- 60% of UMD CEE seniors (75+ students/year) take ENCE 444 Experimental Methods in Geotechnical & Structural Engineering
- 10 – 20 students/year take ENCE 489 Special Problems in Civil Engineering
- With increasing enrollments, laboratory courses have become choke points in the curriculum
- Current lab facilities pose an accreditation risk
Renovated Lab Layout and Design

Teaching (Materials, Soils)

Teaching (Specimen Prep)

Teaching (Structures)
Current Status

Design/Construction under campus Facilities Management
Construction Documents 75+% complete
Construction Start: June 2017
Occupancy: Spring 2018 (partial), Fall 2018 (full)
Benefit: A state-of-the-art facility for training our next generations of engineers and construction leaders.

A special “thank you” to the Maryland Asphalt Association for its most generous contribution!

We are still actively fundraising and would like to talk to many you in the near future...

<table>
<thead>
<tr>
<th>Fundraiser</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whiting-Turner Contracting</td>
<td>$1500K</td>
</tr>
<tr>
<td>Scott Greenhaus ‘82, ‘86</td>
<td>$50K</td>
</tr>
<tr>
<td>Maryland Asphalt Association</td>
<td>$50K</td>
</tr>
<tr>
<td>Maryland Chapter ACI</td>
<td>$25K</td>
</tr>
<tr>
<td>Whitman, Requardt Associates</td>
<td>$25K</td>
</tr>
<tr>
<td>Gutschick, Little and Weber</td>
<td>$25K</td>
</tr>
<tr>
<td>Wallace Montgomery</td>
<td>$25K</td>
</tr>
<tr>
<td>Whitney, Bailey, Cox and Magnani</td>
<td>$25K</td>
</tr>
<tr>
<td>KCI</td>
<td>$25K</td>
</tr>
<tr>
<td>Chamberlain Contracting</td>
<td>$15K</td>
</tr>
<tr>
<td>VIKA</td>
<td>$10K</td>
</tr>
<tr>
<td>GeoConcepts</td>
<td>$10K</td>
</tr>
<tr>
<td>Mercado</td>
<td>$10K</td>
</tr>
<tr>
<td>Forrester Construction</td>
<td>$10K</td>
</tr>
<tr>
<td>Johnson, Mirmiran, Thompson</td>
<td>$5K</td>
</tr>
</tbody>
</table>

TOTAL TO DATE $1835K
Risk & Pay Factor Analysis for HMA

• Project Objectives:
 • Estimating risks of accepting lower quality (agency risk) or rejecting high quality (contractor risk) HMA
 • Relating risks of acceptance to HMA pay factors

• Partners:
 • University of Maryland
 • MD State Highway Administration
 • The many contractors who provided QA/QC data to the MD SHA database
Pay Factor Based on Predicted Performance

Benefit: More rational and equitable distribution of risk between agency and contractor
Hydraulic/Environmental Properties of RAP in Highway Shoulders

Objective: Evaluate heavy metal leaching from RAP

Methods:
• Constant Head Permeability
• Batch Water Leach Test
• Column Leach Test
• UMDSurf

Partners:
• UMD
• MD SHA
Benefits:

- **Documentation of environmentally benign use of RAP in highway shoulders**
- **Increased use of RAP stockpiles**
- **Enhance sustainability of pavement solutions**
ASPHALT MIXES

Open Graded

- Stable Mixes
- Waste Water Treatment Facilities
- PATB - Permeable Asphalt Treated Base
- Porous Pavements
 - Stormwater Management System
 - OGFC
ASPHALT MIXES

Gap Graded

- SMA – Stone Matrix Asphalt
ASPHALT MIXES

Dense Graded

• Cart Paths
• Driveways
• Minor Roadways
• Major Roadways
• Race Tracks
• Fish Rearing Ponds
• Reservoirs
• Airports
WE HAVE COME A LONG WAY
Contact Info:

Ahmet Aydilek
aydilek@umd.edu
301.314.2692

Charles W. Schwartz
schwartz@umd.edu
301.405.1962

Dimitrios Goulias
dgoulias@umd.edu
301.405.2624

Marshall Klinefelter
MKlinefelter@MDAsphalt.org
410.762.2160

MARYLAND ASPHALT ASSOCIATION

Since 1954